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Abstract. The Klein–Gordon equation is interpreted in the de Broglie–Bohm manner as a single-
particle relativistic quantum mechanical equation that defines unique time-like particle trajectories.
The particle trajectories are determined by the conserved flow of the intrinsic energy density,
which can be derived from the specification of the Klein–Gordon energy–momentum tensor in an
Einstein–Riemann space. The approach is illustrated by application to the simple single-particle
phenomena associated with square potentials.

1. Introduction

In a recent paper [1] we outlined a causal trajectory interpretation (in the de Broglie–Bohm
sense) of the Klein–Gordon equation. We indicated how to proceed in order to retain the notion
of particle trajectories, for both the single-and many-particle cases. The basic idea is to extend
to the quantum context some results established in the context of general relativity for conserved
flows of energy momentum in classical scalar fields. In the classical context Edelen [2]
has shown that there is a natural definition of rest-energy flow and an associated conserved
density which are determined respectively by the time-like eigenvectors and eigenvalues of
the energy–momentum tensor of the scalar field itself in its local rest frame. In the context of
a single-particle Klein–Gordon equation these time-like eigenvectors allow the definition of
well behaved particle trajectories. This approach overcomes some of the previous objections
to the interpretation of relativistic scalar fields in terms of a particle ontology.

In this paper we give further details of our approach and provide an illustration by showing
how the simple quantum phenomena associated with single-particle scattering from static
square potentials can consistently be interpreted in terms of well defined individual relativistic
boson trajectories. The single-particle picture is consistent and provides no requirement to have
recourse to second quantization. (Particle creation can only be discussed in a many-particle
approach.) We also discuss the Lorentz transformation properties of the trajectories.

2. Particle interpretations of the Klein–Gordon equation

De Broglie first proposed a particle interpretation of the Klein–Gordon equation† in the period
1926–27 [3]. De Broglie proceeded using the polar form of the scalar field,

φ = R exp(iS) (1)

† We take h̄ = c = 1.
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to decompose the wave equation

�φ = −m2φ (2)

into a continuity equation

∂µ(R2∂µS) = 0 (3)

and a Hamilton–Jacobi equation

∂µS∂
µS − �R

R
= m2. (4)

This approach gives a positive definite Lorentz scalar probability density, R2, but the problem
with the use of ∂µS to define the flow lines is that ∂µS is not always a time-like four-vector.
Consequently the three-velocity, defined (in the absence of electromagnetic fields) by

v = ∇S

− ∂S
∂t

(5)

is not necessarily subluminal. This fact was, of course, known to de Broglie [5] but he did
not consider it a serious pathology. After all, no experimental consequences follow from the
implied superluminal motion of the particles and the measurable predictions of the quantum
theory are recovered and these do not contravene relativistic covariance.

Another approach based on relativistic hydrodynamics has been developed [4,6,7] but in
this paper also there is an implied assumption that ∂µS is a time-like four-vector. Because of
the difficulty with space-like flows the particle interpretation of the Klein–Gordon equation
has not generally been accepted. Instead an interpretation based on well defined, extended
fields has been developed [8–12].

It turns out, however, that at least for massive bosons there is a possibility to define time-like
flows and hence particle trajectories that follow the flows and so one objection against a particle
formulation of boson fields may be overcome. Our aim here is to explore the consequences of
taking the idea of boson trajectories seriously.

Dirac [13] has shown that in relativistic hydrodynamics a Hamiltonian description can be
given with reference to an arbitrary space-like hypersurface. The Hamiltonian density H for
any field splits into two pieces, each piece being proportional to a lapse or shift vector (N,Ni).
The two pieces have a simple physical significance as shown by Schutz [14], namely

N
∂(H(−g)

1
2 )

∂N
= (−g)

1
2 nµTµνn

νN ≡ εN (6)

Ni

∂(H(−g)
1
2 )

∂Ni

= (−g)
1
2 gijnµTµjNi ≡ P iNi (7)

where nµ = −N(4g0µ) is a unit normal to a space-like hypersurface, (4gµν) is the four-
dimensional metric and gij is the three-dimensional metric. ε and Pi are, respectively,
the coordinate densities of energy and momentum measured by an observer at rest on the
hypersurface.

One can define the flow lines for relativistic bosonic fields through the energy–momentum
tensor T µ

ν . In order to obtain a Lorentz invariant description one must form true four-vectors to
define the flow of energy momentum [12]. If one defines an arbitrary time-like vector ην then
T µ
ν ην is a true four-vector defining the flow of rest energy†. This flow, however, is dependent

on the arbitrary choice of ην and is not therefore suitable, as it stands, if one wishes to ascribe
beables to the field itself.

† A justification for this approach can be found in [13] and [14].
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Edelen [2] has suggested that an intrinsic natural four-vector is provided by the matter
field itself through the eigenvalue equation

T µ
ν Wν = λWµ. (8)

Edelen shows that, given such a unique Wµ, an intrinsic rest energy density (ρ) exists and
does not have to be introduced ad hoc into the Einstein theory. The intrinsic energy density
satisfies

(ρWµ);µ = 0 (9)

where ( );µ indicates the covariant derivative. Edelen establishes, given the unique Wµ, that

T µν = λWµWν + σµν (10)

where σµν is any symmetric tensor field with space-like support. Using also (T µν);ν = 0 one
obtains

(λWν);ν = σµνεµν (11)

where εµν is the Born rate of strain tensor. One now looks for a path density S such that its
Lie derivative along Wµ is equal to (−g)

1
2 σµνεµν . It follows straightforwardly that

S =
(

exp

[
−
∫ b

a

ε dτ

])(∫ b

a

(
exp

[ ∫ τ

a

ε dτ

]
(−g)

1
2 σµνεµν dτ

))
(12)

all integrations being performed along Wµ and ε = εµνg
µν .

In the presence of electromagnetic fields we have

(T
µν

matter);µ = ejµF
µν (13)

where ejµ is the charge current, Fµν is the electromagnetic field tensor and ejµF
µν is the

Lorentz four-force. The modified conservation relation now reads

(λWν);ν = σµνεµν + ejµF
µνWν. (14)

The path density is now defined to be

S(s0) =
(

exp

[
−
∫ s0

0
ε dτ

])(∫ b

a

(
exp

[ ∫ τ

a

ε dτ

]
(−g)

1
2 (σµνεµν + ejµF

µνWν) dτ

))
.

S will, in general, be path dependent and if the quantities in the integrand are continuous
with no singularities can be set to zero on an initial space-like hypersurface. Therefore the
initial value of ρ is equal to λ and λ is a constant of the motion along the flow lines.

One now has a unique scalar density

$ = (−g)
1
2 λ − S (15)

or, if one prefers, a unique ρ given by

$ = (−g)
1
2 ρ. (16)

One can say that λ(−g)
1
2 Wµ is a flux of rest energy density created in amounts equal to σµνεµν

per unit geometrical volume. σµν are the generalized stresses giving rise to the energy flow.
S then represents a path-dependent flux which combined with the flux of rest energy density
gives a conserved flux $Wµ. $Wµ can thus be thought of as an intrinsic energy density flux.

Using this approach for the Klein–Gordon field circumvents a number of objections to the
very notion of boson trajectories, either using the de Broglie approach or using the components
of the energy–momentum tensor to define flow lines and densities [9].

Other objections have been raised to single-particle formulations of relativistic quantum
mechanics. For example there are a number of ways of setting up a Hilbert space for the



7340 G Horton et al

Klein–Gordon equation† but the scalar product utilized does not lead to a positive definite
probability density. The position operator, also, does not have the usual form and it is not clear
what measurement procedure would correspond to the measurement of position in the theory
since the eigenfunctions are not delta functions and have an infinite range, which suggests a
violation of causality.

One way of proceeding has been to use the current jµ which obeys a conservation relation∫
V

∂µj
µ d4x =

∫
S

jµnµ d3x (17)

where V is a four-volume and S is an enclosing hypersurface with unit normal nµ. Since jµ is
not time-like everywhere, even in the case of a restriction to positive-energy solutions, jµnµ

does not provide a ‘probability’ density analogous to the non-relativistic expression. In the
case of trajectory theories one could use a scalar density jµnµ to give a density of crossings
of the flow lines, given by jµ, across a hypersurface. The usual choice is to use equi-time
surfaces giving a density of j 0n0 (with n0 = 1). A Lorentz transformation to a different frame
of reference and equi-time hypersurface then leads to a density ρ ′, given by

ρ ′ = j ′
µn

′µ = ρ. (18)

One has, however, privileged one equi-time hypersurface (one does not choose j0 in each
frame). This definition of ρ does not, therefore, depend solely on the field but also, through nµ,
on the choice of the space-like hypersurface. (Dürr et al [19] propose to treat the hypersurface
as an additional dynamical variable with its own equation of motion.) One should note that the
usual Klein–Gordon scalar product, defined via the conservation relation, is independent of
the choice of surface S and if one considers an infinitesimal tube along the direction of jµ then
putting nµ = jµ

|jµ| one will have |jµ| dσ constant along the tube, where dσ is the cross-sectional
area normal to jµ. The fact that jµ is not everywhere time-like, and hence the surfaces σ not
always space-like, means that |jµ| is not interpretable as a probability density of finding a
particle in a given position. The density of crossings of flow-lines is however given by |jµ|,
which is a scalar quantity. In one frame of reference, at one point in spacetime, there will be
a rest frame in which ρ = |j0| in the case of a time-like flow. Although this is not of use
in the Klein–Gordon case it suggests that, in the Dirac case for example, one might choose
the density of crossings as |jµ|, which will be independent of the hypersurface and Lorentz
invariant.

Although there may well be a preferential slicing of spacetime [20] and equations of
motion associated with that slicing, in view of the lack of a theory of such a preference, it
seems better to suppose that the choice of space-like hypersurface for the preparation of a
system in a given state and its subsequent measurement can be left open to the experimentalist
(in thought, at least).

We therefore have proposed to take the eigenvalue λ of the energy–momentum tensor T µ
ν ,

corresponding to the unit time-like vector Wµ, as the positive definite scalar density. In the
Klein–Gordon case we have previously given the prescription for finding Wµ, which always
exists and solely depends on the structure of T µ

ν , λ being given by

λ = 1
2 [m2|φ|2 + |∂µφ∂µφ|] (19)

λ is the rest energy at a point, in the frame of reference provided by [Wµ] = [1, 0, 0, 0] i.e.
the locally stationary frame, and λ

√−gWµ is a flux of rest energy density ρ
√−g such that

(ρWµ);µ = 0. (20)

† See, for example, Schweber [16], Wald [17]. An example of a different approach is that of Gitman et al [18].
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It is important to note that the flow lines given by Wµ are not geodesics since in the Klein–
Gordon case in equation (10) the σµν is non-zero i.e. the Klein–Gordon field is not that of
an incoherent fluid—there are additional state-dependent pressure terms of a purely quantum
mechanical origin. One sets ρ equal to λ on an arbitrary initial space-like hypersurface;
ρ
√−g has been called the intrinsic energy density [2]. The intrinsic energy density per unit

geometrical volume is constant along the flow lines defined by Wµ, i.e. λ
√−g da is constant

along the flow lines and changes in da are compensated by the
√−g factor, where

√−g√
(−g)0

= exp

(
+
∫

ε ds

)
(21)

and ε = εi
i , εij being the Born rate of strain tensor.

λ is, therefore, a constant of the motion [2]. The advantage of using λ as a density of
crossings is that it is defined solely by the field and is a constant along the time-like flows; one
may also consider arbitrary space-like hypersurfaces for preparation and measurement.

One must however note that λ is a nonlinear observable of the type proposed by
Weinberg [24] and Leifer [25], who give different accounts of a nonlinear modification of
quantum mechanics. Weinberg proposes a scheme that would enable one to measure such a
nonlinear observable. λ is clearly not a conventional probability density. In justification of
such a procedure one notes that in trajectory theories, such as those proposed by de Broglie and
Bohm, there is no need to use the conventional apparatus of Hermitian operators and collapse
to define the theory. One has a well defined physical picture in which the particle follows a
trajectory and once a measurement interaction is specified the outcome can be calculated for
various initial particle coordinates. The uncontrollable nature of the initial coordinates in any
given case limits the prediction to statistical statements only. One may therefore propose that
the actual density of crossing of flow lines corresponds to that of the particles with no necessity
to consider conventional measurement processes and no need to define a probability density
yielding the statistical results if one were to make a measurement. One takes a consistent
ontological position and accepts the contextualization of results upon measurement.

The eigenvectors of T ν
µ are defined by (8). In the case of massive spin-0 and spin-1

fields unique time-like eigenvectors exist at each point of the Riemannian curved spacetime.
Transforming to Riemann normal coordinates gives T µ

ν in the usual flat spacetime form
(minimal coupling) with no curvature contributions [26]. We discuss here only the scalar
case.

Writing a solution φ of the Klein–Gordon equation as

φ = exp[P + iS] (22)

and setting ∂µP = Pµ and ∂µS = Sµ one obtains [15, 17]

T µ
ν = |φ|2[m2 − (P αPα + SαSα)]δ

µ
ν + 2|φ|2[(P µPν + SµSν)]. (23)

The second term can be written as 2|φ|2 times


...

P µ

...


 [. . . Pµ . . .] +




...

Sµ

...


 [. . . Sµ . . .] (24)

the eigenvectors of T µ
ν must be a linear combination of [Pµ] and [Sµ] (or orthogonal to the

term above). Some algebra shows that the two solutions are of the form (unnormalized)

Sµ + expθ P µ (25)

Sµ − exp−θ P µ (26)
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where

sinh θ = PµPµ − SµSµ

2PµSµ

. (27)

These two vectors are easily shown to be orthogonal four-vectors using the expression for
sinh θ . One can conclude that one is time-like and the other space-like (or both null). If both
eigenvectors were space-like then, in some frame of reference, their time components would
both vanish, giving eθ = −e−θ = − S0

P0
, which is not possible with θ real as given by (27).

In deriving T µ
ν one has assumed the usual metric with one time-like axis. As a result two

further space-like vectors aµ and bµ can be derived such that

aµ(Sµ + eθPµ) = 0

aµ(Sµ − e−θP
µ ) = 0

and similarily for bµ, since the vectors Sµ + eθPµ and Sµ − e−θPµ define a space-like two-
dimensional plane. The overall eigenvalue λ is given by

λ = |φ|2[m2 ± ([PµPµ − SµSµ]2 + 4[PµSµ]2)
1
2 ]. (28)

The three-velocity is given (in the absence of electromagnetic fields) by one of the two
expressions

v = ∇S ± e±θ∇P

−( ∂S
∂t

± e±θ ∂P
∂t

)
. (29)

In those regions where the de Broglie three-velocity is less than unity then ∂µS is a time-like
four-vector in all frames of reference. A covariant condition can then be given for agreement
between vdB and ve. Transforming to the rest frame at a point and rotating the space axis one
obtains

eθP ′
1 = −S ′

1 e−θP ′
0 = S ′

0

or

e−θP ′
1 = S ′

1 eθP ′
0 = −S ′

0.

The second case can be dealt with by setting θ equal to −θ and P ′
µ equal to −P ′

µ in the first
case, so one need only consider the first case in detail. If one transforms back to a frame
moving with three-velocity equal to tanh α (at some point) one finds

S1 = −P0(e
θ + e−θ ) sinh α cosh α − P1(cosh2 αe−θ + sinh2 eθ )

S0 = P0(cosh2 αeθ + sinh2 e−θ ) + P1(e
θ + e−θ ) sinh α cosh α.

If the de Broglie three-velocity is less than one (at the considered point) one sees that θ must
be sufficiently large and negative to obtain

S1

−S0
→ tanh α.

The two ways of calculating the velocity will agree where∣∣∣∣ S1

−S0

∣∣∣∣ < 1

with θ sufficiently large and negative (or positive for the other case). In one dimension it
can be shown that the + signs give the time-like flows. The flows of the field and hence the
individual particle trajectories are described by a set of world-lines in spacetime. Evidently
they transform according to the appropriate Lorentz transformation to any other inertial frame.
The world-lines of the particles are Lorentz invariant in the sense that the same set of events
will be connected by the transformed world-line in all inertial frames.
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3. Simple example: the square potential barrier

In order to illustrate our physical model we compare the velocities and trajectories defined
using the non-relativistic de Broglie–Bohm formulation, de Broglie’s approach to the Klein–
Gordon equation and our definition in the context of single-particle scattering from a square
potential barrier. The counter-intuitive behaviour which arises in this context is often cited as
evidence of the inadequacy of single-particle interpretations of relativistic wave equations and
of the need to proceed to second quantization, but on closer examination it can be seen that no
paradoxical behaviour arises provided one determines the boundary conditions appropriately.

Relativistically the potential may be either scalar or electrostatic in origin and we consider
both cases here†. Using the relativistic relation

(h̄ω)2 = (h̄k)2 + m2 (30)

(we take h̄ = c = 1). In the regions of zero potential the momentum is given by

k1 = ±
√
ω2 − m2. (31)

The momentum in the potential region depends on the type of potential. For the scalar case
we have

k2 = ±
√
ω2 − (m + V )2 (32)

whereas for the electrostatic case we have

k2 = ±
√
(ω − V )2 − m2. (33)

When dealing with an electrostatic potential step of semi-infinite extent one needs to take the
positive square root in defining the momentum in the potential region in order to ensure that
we have the correct physical boundary conditions. This choice avoids the appearance of waves
travelling in from positive infinity when E < V + m and hence the Klein paradox does not
arise‡. We also take positive values for ω; there is an exactly symmetrical set of solutions for
negative ω but the two sets are disjoint. We shall consider in detail only the barrier case here.
The electrostatic step behaviour cannot be obtained by extending the barrier width to infinity
as one always has waves propagating in each direction when E < V + m.

We define the potential barrier to occupy the region 0 < x < a and to have magnitude V

in a frame of reference that we label .. In front of the barrier, for x < 0 the wavefunction is

ψ(x) = eik1x + Re−ik1x (34)

whereas in the region of the barrier we have

ψ(x) = Geik2x + He−ik2x (35)

beyond the barrier

ψ(x) = J eik1x. (36)

Solving the boundary conditions at the barrier we find the standard expressions for the
reflection and transmission ratios.

|T |2 = 4k2
1k

2
2

(k2
1 + k2

2)
2 − (k2

1 − k2
2)

2 cos2(k2a)
(37)

|R|2 = (k2
1 − k2

2) sin2 k2a

(k2
1 + k2

2)
2 − (k2

1 − k2
2)

2 cos2(k2a)
. (38)

† The scalar potential was originally introduced to give a containment model for quarks (the so-called bag model)
after it was found that an electrostatic delta-function barrier could not give containment.
‡ The original Dirac theory version of the paradox was effectively resolved in this manner [21], see also the discussion
in [22, p 264]. Pair production by strong fields is a reality, but evidently it cannot be treated in a single-particle theory
restricted to the single-particle sector of Fock space. Examples involving pair production can only be treated in
many-particle theories.
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The different cases studied here are distinguished by the prevailing relationship between k and
ω. In the scalar case k2 becomes imaginary when V > ω − m (and the so-called Klein paradox
does not arise for scalar potential steps), whereas in the electrostatic case k2 is imaginary only
in the interval ω − m < V < ω + m, for which there is exponential decay in the barrier. As
the barrier height is increased beyond ω + m, k2 becomes real and one has a transmitted and a
reflected wave in the barrier region and there is no confinement.

In the usual approach the physical meaning of the component wavefunctions is derived
from their associated currents: one speaks in terms of an incoming, transmitted and reflected
current. But the wavefunction in front of the barrier is, of course, a pure superposition state and
so strictly there is just the overall current associated with this pure state. Where a plane-wave
description is used, the incoming and reflected wavefunctions overlap over the whole of space
(x < 0) and so, in the usual approach, for the purpose of interpretation the wavefunction is
tacitly considered to be a mixture; only then can the physical situation be described in terms
of separate incident and reflected currents. The reflected current is given by −k1|R|2 and the
transmitted current by Re (k2|T |2). In the pure state the current is always positive or zero. As
the reflection coefficient increases the current decreases, vanishing as the reflection coefficient
approaches unity.

For the scalar potential the variation of the transmission and reflection coefficients for a
given energy and over a range of barrier heights and widths is similar to that familiar from the
non-relativistic case†. As shown in figure 1 the transmission decays to zero as the barrier height
increases to V = ω − m and the wave is completely reflected. For an electrostatic barrier the
situation is somewhat counter-intuitive. For an incident momentum of 0.95 (in our arbitrary
units), figure 2 shows the behaviour of the transmission coefficient (for the electrostatic case)
as the magnitude and width of the barrier are varied. At first, as expected, the transmission
decreases as the barrier potential height or width increases and this continues until the region
for which V = ω ± m, throughout which there is an exponential decay of the wavefunction in
the barrier. As the magnitude of the barrier potential increases still further, transmission once
more increases right up to V = 2ω, where full transmission occurs. Thereafter transmission
oscillates with increasing barrier height and width (where in the scalar or non-relativistic case
the transmission is zero).

In the non relativistic case the continuity equation for the conserved density ρ = |ψ |2 is

∂ρ

∂t
= ∇ · (ρ�v) (39)

and this suggests that the velocity be defined by

�vS =
�j
ρ

= Im

(
∂
∂x

ψ(x, t)

ψ(x, t)

)
(40)

which for the region in front of the barrier yields

vS = k1(1 − R2)

2R(cos(2k1x)) + 1 + R2
. (41)

At the minimum of the denominator the velocity is given by

vS = k1(1 + R)

(1 − R)
. (42)

Evidently for the non-relativistic case the velocity has no upper bound and where the density
is very small the velocity will be very large. The density will develop nodes as R → 1. This

† We set m = 1 for the calculations presented in this section.
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Figure 1. Variation of the transmission coefficient with magnitude V and width a of a scalar
potential barrier for an incident energy of 1.38.
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Figure 2. Variation of the transmission coefficient with magnitude V and width a of an electrostatic
potential barrier for an incident energy of 1.38.

case was solved exactly by Takabyasi [23]. Typical trajectories for the incident wavepacket
case can also be seen in [27].

de Broglie’s expression for the velocity in the Klein–Gordon case is given in equation (5).
For the particular case of the barrier this yields

vdB = 1

(ω − V )
vS (43)

with k1 in the expression for vS now given by (33), for the region in front of the step. In the
limit for which k1 is small the de Broglie velocity approaches vS. Again there is no upper
bound on the velocities defined in this way. As the reflection coefficient approaches unity the
regions around the minimum for which the velocity is superluminal shrink, but the magnitude
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of the velocity in these regions increases rapidly. The regions shrink to a point as the reflection
coefficient approaches unity.

The situation is markedly different if one uses the time-like eigenvector of the energy–
momentum tensor to define velocities and its eigenvalue to define the density as described
above in equations (28) and (29). In this particular one-dimensional case, for the definite
energy eigenfunctions, the expression for the velocity can be written

ve = ∇S + eθ∇P

ω − V
. (44)

This velocity is a weighted combination of the de Broglie velocity and what has been referred
to elsewhere as the osmotic velocity. The combination always has a magnitude less than unity.

For this simple case where the wavefunction in front of the barrier is a superposition of two
counter-propagating waves with complex weights, it can be shown that the eigenvalue of the
energy–momentum tensor λ and |φ|2 are in phase and related at the maximum and minimum
by

λ = 2k2|R| + (1 ± |R|)2. (45)

In this case then, even for complete reflection when R = 1, although |φ|2 will go to zero at
the minimum, λ remains finite everywhere†. If one wants to calculate ρ at later times then the
piecewise constant potential introduces some complications since the delta-function forces at
the beginning and end of the barrier introduce discontinuities in the path density S and one
will have to integrate along the paths. We have

jµF
µνWν = ejµ

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
Wν. (46)

For the one-dimensional, time-independent electrostatic barrier this becomes

jµFµνW
ν = e(j 3W 0 − j 0W 3)

∂A0

∂x3
(47)

which has a singularity at the start and end of the barrier, hence there will be a step discontinuity
in S at the beginning and end of the barrier.

For the purposes of illustration we calculate the various densities, trajectories and velocities
defined above, in the laboratory frame in which the barrier is stationary, for a variety of cases.

For a momentum of k1 = 0.1 (in our arbitrary units in the . frame) the particle has a
velocity of one-tenth of the speed of the light. If the reflection coefficient is also low then the
three expressions for the velocity are approximately equal, as are the densities, and the motion is
time-like in all cases. The situation is very different if we consider a large reflection coefficient,
say R = 0.99. With the relativistic energy given by E = √

1.01 the Schrödinger velocity
and the de Broglie velocity are similar; the relativistic scaling is just

√
1.01. Both expressions

give superluminal motion in the interference minimum. The eigenvector velocity remains
subliminal, showing only a small oscillation. As the reflection coefficient approaches unity
the de Broglie velocity increases without limit at the minimum of |φ|2, whereas the energy–
momentum velocity approaches zero as λ approaches a minimum. A graph comparing the de
Broglie and the energy–momentum velocities and densities is given in figure 3. It is clear that
even in this ‘non-relativistic’ limit the relativistic corrections to the velocity are important in
maintaining a subluminal velocity in the interference minimum. That the low-energy limit of
the relativistic de Broglie–Bohm velocity and the non-relativistic de Broglie–Bohm velocity
differ considerably in interference situations was first noted in [28]. The de Broglie trajectories
associated with this situation are given in figure 4, and the eigenvector trajectories in figure 5.

† This is similar to the Dirac case where the density cannot have nodes [28].
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Figure 3. Schrödinger, de Broglie (dotted curve) and eigenvector (solid curve) velocities and
densities for k = 0.1, a = 12, V = 0.0306 and R = 0.99: the Schrödinger and de Broglie
velocities are not distinguishable; the eigenvector velocities are always less than unity.
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Figure 4. De Broglie trajectories and their direction field for k = 0.1, a = 12, V = 0.0306 and
R = 0.99 in the region of an interference minimum.

The relativistic trajectories at low energy differ considerably from those calculated using the
non-relativistic (or even the de Broglie) formulation. Several authors have suggested using
non-relativistic Bohm trajectories to calculate low-energy barrier-tunnelling times; however,
we see that the calculation of tunneling times based on the low-energy relativistic trajectories
will in general give rather different predictions.

At the relativistic momentum k = 0.95 the differences are more marked for all values of
the reflection coefficient. Figure 6 shows a comparison of the velocities and densities defined in
the de Broglie theory and in ours for the case of a reflection coefficient of 0.7 when E < V −m

(the normal region). Figure 7 shows the associated de Broglie trajectories and figure 8 the
associated energy–momentum trajectories. Note that the velocities differ appreciably in the
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Figure 5. Energy–momentum flow trajectories and their direction field for k = 0.1, a = 12,
V = 0.0306 and R = 0.99 in the region of an interference minimum.
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Figure 6. De Broglie (dotted curve) and energy–momentum (solid curve) velocities and densities
for k = 0.95, a = 12, V = 0.36 and R = 0.7.

region of the interference minimum. When V − m < E < V + m the reflection coefficient is
unity and the velocities are zero. When V > E+m we enter the Klein paradox region; figure 9
shows the de Broglie and eigenvector velocities and densities for a reflection coefficient of 0.7
in the anomolous transmission region. Figure 10 shows the de Broglie trajectories associated
with the velocities of figure 9. Note that the motion is always in the positive direction. Figure 11
shows the eigenvector trajectories associated with the velocities of figure 9.

4. Lorentz covariance

In the theory we have given here, based on the eigenvalues and eigenvectors of the energy–
momentum tensor in the local rest frame of the flow, the density is a Lorentz scalar and the
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Figure 7. De Broglie trajectories and their direction field for k = 0.95, a = 12, V = 0.36 and
R = 0.7.
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Figure 8. Eigenvector trajectories and their direction field for k = 0.95, a = 12, V = 0.36 and
R = 0.7.

flows of energy momentum are defined by four-vectors and are always time-like. The Klein–
Gordon wavefunction, which determines the density, and the flow evolve unitarily in a covariant
manner and so the problems associated with wavepacket collapse in a relativistic theory do
not arise in the same way (there is no wavepacket collapse). If the particle position (or the
entire world-line) is taken as the beable or the element of reality then these are clearly Lorentz
covariant. For a given spacetime wavefunction $(x) = $′(x ′), there is a unique world-line
through a given spacetime event. The set of spacetime points linked by a world-line is invariant,
but their coordinate description in other frames is, of course, different. So the situation here
is no different from that for a classical particle world-line. We labour this point as doubts
have been raised concerning the Lorentz covariance of trajectories as defined in relativistic de
Broglie–Bohm theories.
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Figure 9. De Broglie (dotted curve) and energy–momentum (solid curve) velocities and densities
for k = 0.95, a = 12, V = 4.47 and R = 0.7, in the Klein region.
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Figure 10. De Broglie trajectories and their direction field for k = 0.95, a = 12, V = 4.47 and
R = 0.7, in the Klein region.

To expand on this point further, consider a single-particle system prepared in the laboratory
or . frame on a space-like hypersurface (given by the actual experimental details); typically
this will be an equal-time hypersurface, although it need not be so. It is important to remember
here that all preparations must be referred to some extended space-like hypersurface and not
to a single point or to a time-like hypersurface. From this initial specification on the arbitrary
space-like hypersurface the evolution of the wave function can be calculated and the spacetime
energy–momentum flow lines are then determined using the prescription given above. The
calculation of the wavefunction on any other arbitrary space-like hypersurface, different from
the initial surface, would have to be carried out using a type of Tomanaga–Schwinger approach,
evolving the initial wavefunction to the chosen hypersurface. The flow lines remain the same,
irrespective of the choice of hypersurface, although their coordinatization using alternative
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Figure 11. Eigenvector trajectories and their direction field for k = 0.95, a = 12, V = 4.47 and
R = 0.7, in the Klein region.

frames of reference will be different. There is an important distinction to be made between
the arbitrary choice of space-like surface and an inertial given frame.

Consider now the same physical situation as it is described in another inertial frame, .′,
in motion with respect to .. In this frame the system is not described as having been prepared
on an equal-time hypersurface: the initial hypersurface in .′ is just the Lorentz transformed
hypersurface defined in .. The relationship between the flow-lines in . and .′ is simply that
of the usual passive re-coordinatization of world-lines which follows on the application of the
appropriate Lorentz transformation. There is no preferred frame in this approach, although
there is, as a matter of contingent fact, a particular space-like hypersurface on which the system
is actually prepared.

It is perhaps not surprising that Lorentz covariance follows naturally in the single-particle
case where non-local correlations cannot arise. We consider the many-particle case in a
further paper. In the approach that we have described here measurements must be treated as
particular physical interactions described by introducing the appropriate interaction terms in
the Hamiltonian and the appropriate additional apparatus variables. There is no wavepacket
collapse and the wave equation will still yield a covariant process evolving unitarily into
different channels, each associated with a different outcome of the measurement [11]. In a
further paper we will consider the Klein–Gordon equation for a fixed number of particles greater
than one and its interpretation in terms of particle trajectories. This will allow consideration of
Lorentz covariance and nonlocality in a relativistic boson particle trajectory de Broglie–Bohm
theory.
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